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Recap from Last Time



  

What is First-Order Logic?
● First-order logic is a logical system for 

reasoning about properties of objects.
● Augments the logical connectives from 

propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

many objects at once.



  

∃ is the existential quantifier 
and says “there is a choice of 
b where the following is true.

Some bear is curious.

∃b. (Bear(b) ∧ Curious(b))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

“Some P is a Q”
translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition: 
  

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.



  

“All P's are Q's”
translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:
 

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.



  

New Stuff!



  

The Aristotelian Forms

“All As are Bs”
 

∀x. (A(x) → B(x))
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“No As are Bs”
 

∀x. (A(x) → ¬B(x))
“Some As aren’t Bs”

 

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to 
memory. We’ll be using them throughout 
the day and they form the backbone of 

many first-order logic translations.



  

The Art of Translation



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “every person 
loves someone else.”

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a 
person that everyone else loves.”

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

Quantifier Ordering



  

    ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

        Loves(p, q)
    )
)

Combining Quantifiers
● Most interesting statements in first-order 

logic require a combination of 
quantifiers.

● Example: “Every person loves someone 
else”

For every person…

… there is another person …

… they love

∀p. (Person(p) →

        Loves(p, q)
    )
)

    ∃q. (Person(q) ∧ p ≠ q ∧ 



  

    ∀q. (Person(q) ∧ p ≠ q → 
∃p. (Person(p) ∧

        Loves(q, p)
    )
)

Combining Quantifiers
● Most interesting statements in first-order 

logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

There is a person…

… that everyone else …

… loves.

    ∀q. (Person(q) ∧ p ≠ q → 
∃p. (Person(p) ∧

        Loves(q, p)

)
    )



  

    ∀q. (Person(q) ∧ p ≠ q → 
∃p. (Person(p) ∧

        Loves(q, p)

        Loves(p, q)
    ∃q. (Person(q) ∧ p ≠ q ∧ 
∀p. (Person(p) →

For Comparison

)

For every person…

… there is another person …

… they love

    )

    )
)

There is a person…

… that everyone else …

… loves.



  

Quantifier Ordering
● Consider these two first-order formulas:

∀m. ∃n. m < n.
∃n. ∀m. m < n.

● Pretend for the moment that our world consists 
purely of natural numbers, so the variables m 
and n refer specifically to natural numbers.

● One of these statements is true. The other is 
false.

● Which is which?
● Why?

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Quantifier Ordering
● Consider these two first-order formulas:

∀m. ∃n. m < n.
∃n. ∀m. m < n.

● This says
for every natural number m,

there’s a larger natural number n.
● This is true: given any m ∈ ℕ, we can choose n 

to be m + 1.
● Notice that we can pick n based on m, and we 

don’t have to pick the same n each time.



  

Quantifier Ordering
● Consider these two first-order formulas:

∀m. ∃n. m < n.
∃n. ∀m. m < n.

● This says
there is a natural number n

that’s larger than every natural number m
● This is false: no natural number is bigger than 

every natural number.
● Because ∃n comes first, we have to make a 

single choice of n that works regardless of 
what we choose for m.



  

Quantifier Ordering
● The statement

 ∀x. ∃y. P(x, y)  
means “for any choice of x, there's some 
choice of y where P(x, y) is true.”

● The choice of y can be different every 
time and can depend on x.



  

Quantifier Ordering
● The statement

 ∃x. ∀y. P(x, y)  
means “there is some x where for any 
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any 
choice of y, this places a lot of 
constraints on what x can be.



  

Order matters when mixing existential 
and universal quantifiers!



  

Time-Out for Announcements!



  

Problem Set Two
● Problem Set One was due today at 1:00PM.

● You can extend the deadline to 1:00PM Saturday using one of your late 
days. As usual, no late submissions will be accepted beyond 1:00PM 
Saturday without prior approval.

● We anticipate grades being released next Wednesday.
● Regret Clause deadline will be Tuesday, 1 PM.

● Problem Set Two goes out today. It’s due next Friday at 1:00PM.
● Explore first-order logic!
● Expand your proofwriting toolkit!

● We have some online readings for this problem set.
● Guide to Logic Translations: more on converting from English to FOL.
● Guide to Negations: information about how to negate formulas.
● First-Order Translation Checklist: details on how to check your work.



  

Next week...

No classes on Monday. :)



  

Back to CS103!



  

Mechanics: Negating Statements



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false. ∀x. P(x)

∀x. P(x)
∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements
● Use the equivalences

¬∀x. A   is equivalent to   ∃x. ¬A
¬∃x. A   is equivalent to   ∀x. ¬A

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)



  

Two Useful Equivalences
● The following equivalences are useful when 

negating statements in first-order logic:
¬(p ∧ q)     is equivalent to     p → ¬q
¬(p → q)     is equivalent to     p ∧ ¬q

● These identities are useful when negating 
statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we 
strongly recommend using the above equivalences 
to keep → with ∀ and ∧ with ∃.



  

Negating Quantifiers
● What is the negation of the following statement, which 

says “there is a cute puppy”?
∃x. (Puppy(x) ∧ Cute(x))

● We can obtain it as follows:
¬∃x. (Puppy(x) ∧ Cute(x))
∀x. ¬(Puppy(x) ∧ Cute(x))
∀x. (Puppy(x) → ¬Cute(x))

● This says “no puppy is cute.”
● Do you see why this is the negation of the original 

statement from both an intuitive and formal 
perspective?



  

∃S. (Set(S) ∧ ∀x. x ∉ S)
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. x ∉ S)
∀S. ¬(Set(S) ∧ ∀x. ¬x ∉ S)
∀S. (Set(S) → ¬∀x. x ∉ S)

∀S. (Set(S) → ∃x. ¬(x ∉ S))
∀S. (Set(S) → ∃x. x ∈ S)

(“Every set contains at least one element.”)



  

Restricted Quantifiers



  

Quantifying Over Sets
● The notation

∀x ∈ S. P(x)
means “for any element x of set S, P(x) 
holds.” (It’s vacuously true if S is empty.)

● The notation
∃x ∈ S. P(x)

means “there is an element x of set S 
where P(x) holds.” (It’s false if S is empty.)



  

Quantifying Over Sets
● The syntax

∀x ∈ S. P(x)
∃x ∈ S. P(x)

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifiers, but 

please do not use variants of this syntax.
● For example, don't do things like this:

⚠                  ∀x with P(x). Q(x)                     ⚠
⚠        ∀y such that P(y) ∧ Q(y). R(y).           ⚠
⚠                       ∃P(x). Q(x)                           ⚠

   



  

Expressing Uniqueness



  

Using the predicate

   - WayToFindOut(w), which states that w is a way to find out,

write a sentence in first-order logic that means “there is only 
one way to find out.”



  

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)



  

Expressing Uniqueness
● To express the idea that there is exactly one object 

with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifier” 
used to express this:

∃!x. P(x)  
● For the purposes of CS103, please do not use this 

quantifier. We want to give you more practice using 
the regular ∀ and ∃ quantifiers.



  

Next Time
● Functions

● How do we model transformations and 
pairings?

● First-Order Definitions
● Where does first-order logic come into all of 

this?
● Proofs with Definitions

● How does first-order logic interact with proofs?
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